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This paper investigates the heat propagation process in a gas from concentrated
energy sources with deposition times, t ′

d , of the order of the characteristic acoustic
time, t ′

a , across the region where the temperature will be increased by a factor of
order unity. Heat propagation takes place by two different mechanisms that act
separately in two different neatly defined spatial regions of comparable size. Around
the source, we find a conductive region of very high temperature where the spatial
pressure variations are negligible. The edge of the resulting strongly heated low-
density region appears as a contact surface that acts as a piston for the outer flow,
where the pressure disturbances, of order of the ambient pressure in the distinguished
regime t ′

d ∼ t ′
a considered here, generate a shock wave that heats up the outer gas

as it propagates outwards. The mass and energy balances for the conductive region
provide a differential equation linking its pressure with the velocity of its bounding
contact surface, which is used, together with the jump conditions across the shock,
when integrating the Euler equations for the outer compressible flow. Solutions for
the heating history are obtained for point, line and planar sources for different values
of the ratio t ′

d/t ′
a , including weak sources with t ′

d � t ′
a and very intense sources with

t ′
d � t ′

a . The solution determines in particular the temperature profile emerging as
the pressure perturbations become negligible for times much larger than the acoustic
time.

1. Introduction
The analysis of heat propagation from an energy source in a gas is of significance

for many applications, including those related to combustion initiation. Depending
on the rate of heat deposition, both pressure waves and thermal conduction can be
responsible for heat propagation. If, for instance, the deposition time is sufficiently
small, a problem reviewed in the article of Korobeinikov (1971), the resulting energy
release is effectively instantaneous, leading to the formation of a strong shock wave
that when propagating outwards is the main heating mechanism. Thermal conduction,
on the other hand, is the dominant transfer mechanism when the deposition time is
sufficiently large.

The present paper investigates the heating process in intermediate cases, due to a
concentrated energy source in an infinite gas medium at rest with initial temperature,
pressure and density T ′

o , p′
o and ρ ′

o. The analysis will be limited to symmetric plane,
line and point sources, which are denoted with the subscript j = (0, 1, 2); so that,
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for instance, E0, E1 and E2 represent, respectively, the energy per unit surface of
the planar source, the energy per unit length of the line source, and the energy of
the point source. This energy defines the characteristic size, r ′

h, of the hot pocket
where the temperature will eventually increase by a factor of order unity, according
to

Ej =
2j πδj

j + 1
ρ ′

ocpT ′
or

′j + 1
h , (1.1)

where cp is the specific heat at constant pressure, assumed for simplicity in the
presentation to be constant, and δj = 0 if j = 0 and δj = 1 otherwise. The equal
sign has been used in the above order-of-magnitude estimate to provide an accurate
definition for r ′

h, to be used as scale in the following development. The case of a
concentrated source considered herein corresponds to external energy sources with a
size r ′

s much smaller than r ′
h, for which the temperatures found around the source

during the deposition period are much larger than the ambient value.
There exist two distinct characteristic times associated with r ′

h, namely a time scale
for conductive heat propagation across the hot pocket

t ′
c = r ′2

h

/
αo, (1.2)

with αo representing the thermal diffusivity of the unperturbed gas, and an acoustic
time scale for propagation of pressure disturbances

t ′
a = r ′

h/(p
′
o/ρ

′
o)

1/2, (1.3)

where (p′
o/ρ

′
o)

1/2 is, aside from a factor γ 1/2, the velocity of sound of the unperturbed
gas, and γ denotes here the ratio of specific heats. The analysis refers to values of Ej

leading to heated regions of size r ′
h large compared with the ambient mean free path

λo, of order αo/(p
′
o/ρ

′
o)

1/2, so that the continuum description of the flow applies. This
implies that the ratio of the acoustic time to the conduction time,

ε = t ′
a/t ′

c � 1, (1.4)

of the order of the Knudsen number of the reference state, λo/r ′
h, is small compared

with unity. We shall take ε as an asymptotically small parameter in the analysis.
The relative importance of heat conduction and mechanical pressure waves in the

heat propagation process depends on the value of the deposition time, t ′
d , during

which the source remains active, to be compared with the characteristic times t ′
c and

t ′
a . The pressure variations are small, and can be neglected, in the distinguished limit
t ′
d ∼ t ′

c, which was treated by Clarke, Kassoy & Riley (1984) for the plane source, and
by Sánchez, Jiménez-Alvarez & Liñán (2003) for point and line sources. As the heat
conduction from the source increases the temperature in a region of characteristic
size r ′

h by an amount of order T ′
o , the resulting thermal expansion induces outwards

velocities of order r ′
h/t ′

d � (p′
o/ρ

′
o)

1/2; so that the flow is near-isobaric, and such that
the heat transport by conduction and convection are comparable. The small pressure
differences induced, of order ε2p′

o, can be neglected when writing the equation of state
for the ideal gas. For the one-dimensional cases treated by Clarke et al. (1984) and by
Sánchez et al. (2003) the momentum equation becomes secondary in the computation,
in that the solution for the temperature and velocity fields can be obtained by
integration of the continuity and energy equations, whereas the momentum equation
can be used a posteriori to compute the small pressure differences that appear.

The other distinguished limit, which we address here, corresponds to energy sources
with deposition times t ′

d ∼ t ′
a , when the characteristic velocities induced during the
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heating period are of the order of the unperturbed velocity of sound. As first noted
by Clarke et al. (1984) in their analysis of the heating of a gas slot confined between
two infinite parallel plates, both heat conduction and pressure waves play a role
in this case, although the two mechanisms act separately in two neatly separated
distinct regions, both of characteristic size r ′

h, where the pressure rise relative to
p′

o is of order unity. Around the source, there exists an inner conductive region
of very hot gas, where, as we shall derive below from (2.5), the temperature is of
order T ′ ∼ ε−1/(1 + σ )T ′

o , with σ , which typically ranges from σ =0.5 to σ = 0.75 for
non-ionized gases, representing the exponent for the assumed power-law temperature
dependence of the thermal conductivity. The thermal expansion increases the pressure
in this inner region and generates a convective flow proportial to the temperature
gradient, with velocities, which in this regime t ′

d ∼ t ′
a are of order (p′

o/ρ
′
o)

1/2, such that
the convective and conductive transport of energy are of the same order. The resulting
density in this region, ρ ′ ∼ ε1/(1 + σ )ρ ′

o, is very small, indicating that most of the gas
that was originally in this hot region has been pushed out due to the overpressure.
Due to the high temperatures found in this inner nearly hollow region the local Mach
number is of order ε1/[2(1 + σ )] � 1, so that the spatial variations of the pressure are
very small. Note that, despite the small densities found in the hot kernel, the local
Knudsen number is still small, of order ε1/[2(1 + σ )], so that the continuum description
holds in this region.

The effect of heat conduction is confined to the inner hot region and to a thin
transitional layer where T ′ − T ′

o is of order T ′
o , so that heat effectively propagates

only to a finite distance from the source. As a result, in the limit ε → 0 the thermal
wave has a sharp front, similar to that encountered by Zeldovich & Kompaneetz
(1950) in the study of instantaneous heat deposition in a purely conductive medium
with temperature-dependent conductivity and ambient temperature equal to zero.
This thermal wave, which has been described for a constant heating rate by Clarke
et al. (1984) in the planar case, and by Sánchez et al. (2003) in the cylindrical and
spherical cases, appears to be bounded by a fluid surface that acts as a piston for the
outer cold gas. The pressure waves produced by the rapid displacement of the outer
fluid, with velocities of order (p′

o/ρ
′
o)

1/2 in this limit t ′
d ∼ t ′

a , generate a shock wave
that propagates outwards, increasing the temperature by a factor of order unity in
an outer region of characteristic size r ′

h. The uniform pressure within the conductive
region is that found at the piston-like contact surface, with a value that changes in
time as dictated by the evolution of the outer compressible flow. The energy released
at the source is employed to increase the internal energy of the inner conductive
region and to mechanically displace the outer fluid. As we shall see below, the energy
balance provides an equation for the motion of the contact surface in terms of the
local pressure, to be used as boundary condition in integrating the Euler equations
for the outer compressible flow. Note that the existence of an inner empty region was
pointed out by Freeman (1968) and Dabora (1972) in their inviscid description of the
self-similar blast waves induced by an energy source with a power-law dependence
on time.

After the source has been turned off, the contact surface slows down, sending
expansion waves that catch up with the leading shock wave, continuously weakening
it. This weakening is additional to the one that for line and point sources is associated
with geometrical effects. The process continues until the shock eventually becomes a
weak wave of the acoustic type for times much larger than t ′

a , as the pressure settles
everywhere to the ambient value p′

o. In the hot pocket that remains, which conserves
its two-region structure for times small compared with t ′

c, the total energy released Ej



382 V. Kurdyumov, A. L. Sánchez and A. Liñán

appears as an enthalpy increment according to∫ ∞

0

2j πδj ρ ′cp(T ′ − T ′
o)r

′j dr ′ = Ej, (1.5)

where r ′ denotes the radial coordinate. Further evolution of the hot pocket, at times
of the order t ′

c, results from heat conduction and convection. In this final near-
isobaric stage, the fluid displaced during the heating period flows back into the
hollow conductive core as this cools down.

The application that motivates our interest in the problem is the initiation of a
deflagration in a combustible mixture by an external energy source, as can be realized
in practice by a spark, a laser beam or by passing an electric current through a
thin wire. Recent efforts to compute numerically the phenomenon of spark ignition
include the works of Kravchik & Sher (1994), Thiele, Warnatz & Maas (2000) and
Thiele et al. (2002). The variable of interest is the minimum ignition energy, Em,
or critical value of Ej for which a self-sustained deflagration is formed following
the deposition of heat. The success of the process depends on the competition
between heat conduction, with a rate characterized by the conduction time across
the hot pocket t ′

c = r ′2
h /αo, and heat release by chemical reaction, which occurs with a

characteristic time, δ2
l /αo, of the order of the residence time across the flame, δl/vl , the

ratio of the characteristic flame thickness δl = αo/vl to the laminar flame propagation
velocity vl . When the energy deposition leads to a hot pocket such that its conduction
time t ′

c is smaller than the characteristic chemical time of the reactive mixture, the
conductive heat loss to the ambient is too rapid to be compensated by the chemical
heat release, and the deflagration initiation fails. As is well known, the critical value
of Em is associated with a value of t ′

c of the order of the chemical time, which
corresponds to a hot pocket of size r ′

h of the order of the flame thickness δl .
The previous numerical simulations of Maas & Warnatz (1988) and Frendi &

Sibulkin (1990) have shown that the external sources that give the smallest value of
Em for a given gas mixture are those with a size r ′

s much smaller than r ′
h ∼ δl and a

deposition time t ′
d much smaller than t ′

c ∼ αo/v
2
l , a finding that motivates the present

study of heating of a gas by a concentrated energy source, which we shall carry
out in the distinguished limit t ′

d ∼ t ′
a . Since the conduction time across the flame is

of the order of the chemical time, the mixture remains chemically frozen during the
heating period studied here. The temperature profile arising as the pressure settles
to the ambient value for t ′ � t ′

a constitutes the appropriate initial condition for the
numerical integration of the near-isobaric ignition process occurring for t ′ ∼ t ′

c. In
that respect the process is significantly different from that of detonation initiation by
energy sources. A detonation can form when the amount of energy released is such
that r ′

h is of the order of, although significantly larger than, the detonation thickness
δd ∼ (p′

o/ρ
′
o)

1/2δl/vl � δl (He & Clavin 1994). Since the characteristic reaction time
δd/(p

′
o/ρ

′
o)

1/2 is in this case comparable to the acoustic time t ′
a , significant chemical

reaction occurs during the deposition period. As a result, to study detonation initiation
the frozen solutions described below need to be modified to account for chemical
heat release, as done for planar sources by Clarke, Kassoy & Riley (1986) and Clarke
et al. (1990).

Our interest in deflagration initiation problems leads us to generalize to point and
line sources the work carried out by Clarke et al. (1984) for the planar case. In
addition, since we are interested in the computation of the minimum ignition energy,
we shall consider finite values of the deposition time t ′

d and describe the flow structure
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arising during both the heating period and post-heating period. For the investigation
of Clarke et al. (1984), which refers only to the heating period, the energy flux
q ′ (amount of energy deposited per unit time and per unit surface), rather than
the energy deposited per unit surface E0, is the relevant parameter characterizing
the heating of the gas. The main parameter in their analysis is q̃w , which, aside
from an irrelevant factor of order unity, corresponds to the dimensionless heating
rate q ′/[p′

o(p
′
o/ρ

′
o)

1/2]. They considered the near-isobaric case, corresponding to small
heating rates q ′/[p′

o(p
′
o/ρ

′
o)

1/2] � 1 such that the characteristic velocity induced by
thermal expansion, which is of order q ′/p′

o, is much smaller than the velocity of
sound, of order (p′

o/ρ
′
o)

1/2. The case of strong heating, q ′/[p′
o(p

′
o/ρ

′
o)

1/2] ∼ O(1), was
also considered, noting in particular that during the early stages of the heating
process, when the amount of heat released is such that the temperature at the source
has increased only by a factor of order unity, the size of the hot pocket, of order
αop

′
o/q

′, is comparable to the ambient mean free path, λo, so that the continuum
description of the flow does not apply at these early times of the order of the
ambient molecular collision time, t ′

λ. However, the Navier–Stokes equations apply for
larger times, when the two-region structure discussed above, which includes an inner
conductive kernel of very high temperature and an outer inviscid region bounded
externally by a shock wave, has already developed. The same two-region structure is
encountered in our work, which considers only situations in which the heat is released
at times t ′

d ∼ t ′
a much larger by a factor ε−1 than t ′

λ, and the size of the heated region
r ′
h is also larger than λo by the same factor. Under these conditions, the validity of

the continuum description is guaranteed, this being the case in deflagration initiation
applications.

The paper is structured as follows. First, we shall give in § 2 the non-dimensional
formulation of the problem, using the scales corresponding to the case ε � 1 with
t ′
d ∼ t ′

a . The simplified formulation for the limit ε → 0 is given next in § 3. The following
two sections are devoted to the limiting cases of instantaneous heat deposition (t ′

d � t ′
a)

and near-isobaric heat deposition (t ′
a � t ′

d � t ′
c). Energy sources with t ′

d ∼ t ′
a will be

investigated in § 6, with particular attention given to the case of a constant heating
rate. The evolution of the flow after the source has been turned off will be considered
next, and the asymptotic temperature and energy distributions emerging for t ′ � t ′

a

will be determined for different values of t ′
d/t ′

a . Concluding remarks will be offered in
the final section.

2. Formulation
The scales identified above for the heating period can be used to define a

dimensionless coordinate r = r ′/r ′
h, a dimensionless time t = t ′/t ′

a , and a dimensionless
velocity v = v′/(p′

o/ρ
′
o)

1/2. With this selection for the time scale, the dimensionless
deposition time

td = t ′
d/t ′

a, (2.1)

of order unity in the distinguished limit considered here, becomes the appropriate
parameter to characterize the intensity of the energy source. Temperature, density
and pressure are scaled with their initial values to give T = T ′/T ′

o , ρ = ρ ′/ρ ′
o and

p = p′/p′
o. Use of these variables enables the problem to be written in an appropriate

dimensionless form that serves to illustrate the character of the solution when t ′
d ∼ t ′

a .
For instance, for the line source the corresponding non-dimensional conservation
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equations become

∂ρ

∂t
+

1

r

∂

∂r
(rρv) = 0, (2.2)

ρ

(
∂v

∂t
+ v

∂v

∂r

)
+

∂p

∂r
=Pr ε

{
∂

∂r

[
T σ

(
4

3

∂v

∂r
− 2

3

v

r

)]
+

2T σ

r

(
∂v

∂r
− v

r

)}
, (2.3)

1

γ

∂p

∂t
+

1

r

∂

∂r
(rvp) − γ − 1

γ
v
∂p

∂r
=

ε

r

∂

∂r

(
rT σ ∂T

∂r

)

+2Pr ε
γ − 1

γ

[(
∂v

∂r

)2

+
(v

r

)2

− 1

3r2

(
∂rv

∂r

)2
]

. (2.4)

These equations, supplemented with the equation of state for the ideal gas p = ρT ,
must be integrated with the initial and boundary conditions

t = 0 : ρ = p = 1, v =0,

t > 0 :

{
r → 0 : v =0, 2rεT σ ∂T /∂r = −q/td,

r = ∞ : ρ = p = T =1, v =0.

}
(2.5)

The analysis assumes a power law k/ko = µ/µo = (T ′/T ′
o)

σ for the variation with
temperature of the thermal conductivity k and viscosity µ from their unperturbed
values ko and µo. A value σ = 0.5 is used in this paper for the exponent in the power
law, which corresponds approximately to non-ionized gases at high temperature. The
dependence of k on temperature is considerably stronger in electronic conduction in
plamas, for which σ = 2.5. We shall see below that in the limit ε → 0 considered here
the solution becomes independent of the Prandtl number of the gas mixture, Pr =
µcp/k, which appears however as a parameter in the complete equations given above.

The heating rate from the source q ′ is non-dimensionalized with its characteristic
value Ej/t ′

d to give the heating function q(t) = q ′/(Ej/t ′
d), of order unity, which must

satisfy
∫ td

0
q dt = td and vanishes for t � td . Note that this definition yields q =1 for

the source of constant rate. An example of the results of integrations of the above
problem is shown in figure 1 for q = 1, td =1 and ε = 0.001. The inner thermal wave
of uniform pressure and the outer compressible flow preceded by a leading shock
wave are clearly visible in the plot. To expose more clearly the two-region structure
that emerges, the profiles of temperature and pressure corresponding to the instant
t = 0.8 have been plotted separately in figure 2, where the associated instantaneous
location of the contact surface, re, and of the shock wave, rs , are indicated with a
dashed line.

3. Asymptotic analysis for ε � 1

The equations for the description of these two regions, which are also given below
for the plane and point source by incorporating the index j in the formulation, follow
naturally from the above problem by considering the limit ε � 1. Thus, the boundary
condition for the heat flux at the source given in (2.5) indicates that the temperature
increases around the source to a large value of order ε−1/(σ +1), which is used to define
a rescaled temperature θ = ε1/(σ + 1)T of order unity in the inner hot region. On the
other hand, an order-of-magnitude balance between the pressure gradient and the gas
acceleration in the momentum equation (2.3) yields a small value of order ε1/(σ + 1) for
the spatial pressure variations in this inner hot region, where r and v are of order
unity. Then, when writing the conservation equations for mass and energy we can
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Figure 1. Profiles of temperature, pressure, density and velocity at t = 0.2 (1), t = 0.4 (2),
t =0.6 (3), t = 0.8 (4), t = 1.0 (5), and t =1.2 (6) obtained for q = 1, ε = 0.001 and td = 1 from
integration of (2.2)–(2.5).
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Figure 2. Profiles of temperature and pressure at t = 0.8 obtained for q = 1, ε = 0.001
and td = 1 from integration of (2.2)–(2.5).
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consider the pressure to be pe(t), uniform in the hot gas, equal to that found at the
edge of the thermal wave, so that (2.2) and (2.4) simplify to

∂

∂t

(
pe

θ

)
+

1

rj

∂

∂r

(
rjpev

θ

)
= 0 (3.1)

and
1

γ

dpe

dt
+

1

rj

∂

∂r

[
rj

(
pev − θσ ∂θ

∂r

)]
=0. (3.2)

In writing (3.2) we have also left out the viscous dissipation terms in (2.4), which
are of order ε. As in (2.5), the boundary conditions at the origin r = 0 are v =0 and
(j + 1)rj θσ ∂θ/∂r = −q/td .

Using the boundary conditions at r =0 in a first quadrature of (3.2) gives

rj + 1

γ

dpe

dt
+ (j + 1)rj

(
pev − θσ ∂θ

∂r

)
= q/td, (3.3)

which determines v in terms of the temperature distribution and pe(t). According
to (3.3) the external heat is locally accumulated in the hot region or transported by
convection or conduction. In the distinguished regime td ∼ O(1), the three terms on
the left-hand side of (3.3) are of the same order, while for td � 1 the pressure pe � 1
remains constant, and convection and conduction cooperate to transport the heat
away from the deposition region.

Substituting (3.3) into (3.1) provides the equation

∂

∂t

(
pe

θ

)
+

1

rj

∂

∂r

[
1

θ

(
q

(j + 1)td
− rj +1

(j +1)γ

dpe

dt
+ rj θσ ∂θ

∂r

)]
= 0 (3.4)

to be integrated with initial and boundary conditions

t = 0 : θ =0,

t > 0 :

{
r → 0 : (j +1)rj θσ ∂θ/∂r = −q/td,

r = re : θ = 0 and θσ ∂θ/∂r = 0,

}
(3.5)

where we have included the additional conditions at the edge, r = re(t), of the hot
region heated by conduction, outside which θ is of order ε1/(σ +1), negligible in the
first approximation. The above problem is coupled to the outer inviscid compressible
flow problem, which must be solved to determine the location of the thermal-wave
edge re(t) as well as the value for the pressure there pe(t).

Since ρ, of order ε1/(σ +1), is negligible in the first approximation at r < re in the
limit ε → 0, the edge of the thermal wave behaves as a contact surface, so that

v =
dre

dt
= ṙe. (3.6)

Using this equation in evaluating (3.3) at r = re, together with the condition that the
heat flux vanish there, provides the energy balance

rj + 1
e

γ

dpe

dt
+ pe

drj + 1
e

dt
=

q

td
, (3.7)

which states that the heat added is partly employed to increase the internal energy of
the hot conductive pocket and partly employed to displace the outer cold fluid.

To anticipate the form of θ(r, t) near the edge r = re of the thermal wave, it is
convenient to write (3.4) in terms of the local coordinate x = (re − r)/δ, which uses a
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time-dependent thickness δ(t), as done by Carrier, Fendell & Marble (1975) for the
analysis of unsteady mixing layers with time-dependent strain rate. Assuming a local
description for small x of the form θ = xβ , and with terms of higher order in x being
neglected, yields, after subtraction of (3.7),

peδδt +

[
jq

(j + 1)tdr
j +1
e

+
1

γ

(
1

j + 1
+

γ − 1

β

)
dpe

dt

]
δ2 = (1 − σβ)x(σ + 1)β−2. (3.8)

The selection β =2/(σ + 1) gives a balance among all of the terms above, reducing (3.8)
to an ordinary differential equation for the evolution of δ, which can be integrated to
give

δ2 =
2(1 − σ )

1 + σ

∫ t

0

exp

{
−

∫ t

t∗

[
2jq

(j +1)tdr
j +1
e

+

(
1

j + 1
+

γ − 1

2/(σ + 1)

)
2

γ

dpe

dt

]
dt∗∗

pe

}
dt∗

pe

(3.9)

where the integration constant has been selected to give a bounded value for δ at t =0
and where t∗ and t∗∗ are appropriate intermediate dummy variables for integration.
The asymptotic behaviour θ = x2/(σ +1) of the temperature profile at re − r � 1 yields
θσ θx = 2x/(σ + 1), indicating that the conduction flux decreases linearly as the contact
surface is approached. Note that, as can be inferred from the multiplying factor in (3.9),
the local asymptotic description θ = [(re −r)/δ]2/(σ +1) is only valid for σ < 1. When the
temperature dependence of the thermal conductivity is stronger, the temperature is
seen to approach its boundary with an infinite gradient, in a local balance between heat
conduction and convection induced by the temperature gradient. The corresponding
exponent β = 1/σ of the resulting local solution θ = x1/σ is determined by equating
to zero the right-hand side of (3.8), while the computation of δ(t) requires in this
case numerical integration of (3.4) and (3.5). Correspondingly, the conduction flux
is seen to decay more slowly as the bounding contact surface is approached, as can
be seen from θσ θx = x1/σ /σ . Also of interest is that the asymptotic behaviour for the
intermediate case σ = 1 is of the form θ = x(ln x−1)1/2 with θσ θx � x(ln x−1), a result
due to Clarke et al. (1984).

In the outer region, r > re, where r is also of order unity, the values of v, p, ρ

and T are of order unity. The characteristic Reynolds number is of order ε−1 � 1,
and molecular diffusion can be neglected in the first approximation when describing
the outer motion. The resulting Euler equations are given by (2.2)–(2.4) for j =1
without the terms on their right-hand sides, which are of order ε. They must be
integrated with the boundary conditions at r = re(t) given above in (3.6) and (3.7).
The external heating rate in general gives rise to the formation of a shock wave, at
r = rs , that propagates into the cold unperturbed gas. The density, ρs , velocity, vs ,
and pressure, ps , behind the shock, and the shock velocity, ṙs , are related though the
jump conditions (Landau & Lifshitz 1987)

ṙs =
drs

dt
=

(
(γ − 1) + (γ + 1)ps

2

)1/2

,

ṙs − vs =

(
[(γ + 1) + (γ − 1)ps]

2

2[(γ − 1) + (γ + 1)ps]

)1/2

,

ρs =
(γ − 1) + (γ + 1)ps

(γ + 1) + (γ − 1)ps

,




(3.10)

where rs(t) is the location of the shock.
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Integration of the Euler equations with boundary conditions (3.6) and (3.7) at r = re

and (3.10) at r = rs determines for a given heating rate q(t) the dynamics of the outer
compressible flow, which turns out to be independent of the value of σ , and clearly
will be valid for any k(T ). The solution includes the instantaneous location of the
contact surface re(t) and that of the leading shock wave rs(t), along with the evolution
of the hot-kernel pressure pe(t), needed to integrate the problem (3.4) and (3.5) for
the structure of the conductive thermal wave corresponding to 0 <r < re. Note that
once the source is shut off for t > td , the energy balance (3.7) for the contact surface
reduces to

d

dt

(
per

(j +1)γ
e

)
= 0, (3.11)

indicating that the evolution of the inner hot region is globally isentropic in the
post-heating period.

4. Instantaneous heat deposition
The formulation given above corresponds to the leading-order description in the

asymptotic analysis for ε � 1 of the heating process from a small source in the
distinguished limit td ∼ 1. Consideration of extreme values of td serves to analyse
limiting cases of interest. Thus, the limit td � 1 corresponds to instantaneous heat
deposition. A straightforward order-of-magnitude analysis of (3.10) indicates that
the shock wave becomes very strong in this limit; it propagates with a velocity
of order ṙs ∼ t

−(j + 1)/(j +3)
d , elevating the pressure of the gas to a large value of

order t
−2(j + 1)/(j + 3)
d p′

o. Since the contact surface also moves with a velocity of order

ṙe ∼ t
−(j + 1)/(j + 3)
d , as indicated by (3.7), both the contact surface and the shock wave

are located at a small radius of order re ∼ rs ∼ t
2/(j + 3)
d when the energy release ends at

t = td . The strong shock keeps propagating outwards as it weakens, reaching distances
of order r ′

h at times of order t ′
a , that is, rs ∼ O(1) for t ∼ O(1). The contact surface

bounding the conductive region also moves outwards as the pressure decreases,
as can be seen by using (3.11), but only to occupy a final asymptotic location
ra ∼ t

2(γ −1)/[γ (j +3)]
d � 1, when pe → 1 for t � 1. Therefore, although a hot conductive

region always exists in the inmediate vicinity of the energy source, its size becomes very
small, compared with r ′

h, in the limit td � 1 of very intense sources. Correspondingly,
the radius of this conductive core can be neglected in the first approximation for
the description of the blast wave that arises following the deposition of heat when
td � 1.

The solution requires numerical integration of the Euler equations with the
boundary conditions (3.10) at the leading shock wave. If one forces the velocity
at the origin to vanish and the solution to satisfy the energy conservation balance

γ

γ − 1
= (j + 1)

∫ rs

0

[
p − 1

γ − 1
+

1

2
ρv2

]
rj dr, (4.1)

then the conditions (3.7) and (3.10) are automatically satisfied for t > td . The numerical
solution, which was first obtained by Goldstine & Neumann (1955) and Brode (1955)
for the spherical blast and by Korobeinikov & Chushkin (1966) for the cylindrical
and planar blasts, determines in particular the evolution of the leading shock wave
from the self-similar blast wave of Sedov (1946) and Taylor (1950), for t � 1, to a very
weak shock moving with a velocity slightly larger than the velocity of sound for t � 1.
In this latter limit, the shock is located at a large distance rs � 1 from the source,
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Figure 3. The profiles of Ta and h corresponding to instantaneous heat deposition from a
planar source (dotted line), a line source (solid line), and a point source (dashed line).

leaving a growing central region of stagnant gas where the pressure has recovered
the atmospheric value. The structure of the resulting near-acoustic wave shows a
region of overpressure and positive velocity inmediately behind the weak leading
shock followed by a trailing region of reverse flow where the pressure is smaller than
p′

o. Landau (1945) was the first to describe the asymptotic decay laws for cylindrical
and spherical waves, whose strengths decrease according to p − 1 ∼ v ∼ r−3/4

s and
p − 1 ∼ v ∼ r−1

s (ln rs)
−1/2, respectively, while the strength of the planar wave decays

somewhat faster (p − 1 ∼ v ∼ r−1/2
s ). Because of the existence of the intermediate

rarefaction region, a second shock wave must appear eventually as explained by
Landau (1945) and Whitham (1950), thereby yielding an N-wave for the final structure
of the near-acoustic wave. This transition to Landau’s N-wave solution is postponed
to a very late stage of the flow evolution however. This was numerically ascertained
by Okhotsimskii & Vlasova (1962), who extended their numerical integrations well
beyond the ranges previously explored by Goldstine & Neumann (1955) and Brode
(1955). Their computations indicate that a second shock indeed emerges, but only for
rescaled times t >∼ 5000, when ps

<∼ 5 × 10−5.
As a result of the shock heating, the isobaric stagnant solution encountered for t � 1

exhibits a characteristic temperature distribution, Ta(r), which constitutes the initial
condition for studies of deflagration initiation from intense energy sources with td � 1.
According to Okhotsimskii & Vlasova (1962), the second shock wave only appears
as a negligibly weak discontinuity for extremely large times, so that its effect on the
asymptotic temperature distribution can be neglected. The condition that each fluid
particle conserves its entropy after crossing the leading shock enables the computation
of Ta(r) for a given leading-shock history. The solution can be written in parametric
form in terms of the values of the pressure and density of the shocked gas, ps(rs) and
ρs(rs), corresponding to a shock location rs . The final temperature of the shocked
particle after expanding isentropically to the ambient pressure becomes Ta = p1/γ

s /ρs ,
while its final location is given by integrating the continuity equation to give
rj + 1 = (j +1)

∫ rs

0
[ps(ξ )1/γ /ρs(ξ )]ξ j dξ . The distributions of Ta(r) are shown in figure 3



390 V. Kurdyumov, A. L. Sánchez and A. Liñán

for γ = 1.4, along with the fraction of energy stored up to the radius r

h =

∫ r ′

0

2j πδj ρ ′cp(T ′ − T ′
o)r

′j dr

Ej

= (j +1)

∫ r

0

(
1 − 1

Ta

)
rj dr. (4.2)

As can be seen in figure 3, this fraction approaches only slowly its limiting value h = 1
for r � 1, in agreement with the asymptotic analysis of Landau (1945), who predicted
that the energy of the near-acoustic wave decays according to 1 − h ∼ r−1/2

s for j =0,
1 − h ∼ r−1/4

s for j = 1 and 1 − h ∼ (ln rs)
−1/2 for j = 2. Moreover, the comparison

between the plots of Ta(r) and h(r) reveals that a significant fraction of the energy is
employed to generate a small change in the temperature of the gas located far from
the source. Implications of this finding for the problem of deflagration initiation are
to be discussed later.

5. Near-isobaric heating
In the opposite limit td � 1, equations (3.4)–(3.10) also describe the heating of a

gas from a source with a deposition time much larger than the acoustic time t ′
a , and

yet much smaller than t ′
c, so that the two-region asymptotic structure still holds. Since

the contact surface moves with a velocity of order r ′
h/t ′

d , the characteristic Mach
number for the motion induced for r > re is t−1

d � 1, while the characteristic Reynolds
number, of order t ′

c/t ′
d , remains large provided t ′

d � t ′
c. The resulting outer inviscid

motion is in first approximation that of an incompressible fluid at r ′/r ′
e ∼ 1, with small

departures at r ′ ∼ (po/ρo)
1/2t ′, which can be computed from the acoustic equations

by considering the linearized form of (3.6), (3.7) and (3.10) around pe = 1, as done by
Clarke et al. (1984) for planar sources and by Deshaies & Clavin (1979) for spherical
sources. In this near-isobaric limit pe � 1, and equation (3.7) can be integrated to give
rj + 1
e =

∫ t

0
(q/td) dt , thereby enabling the computation of the thermal wave existing for

0 <r < re independently of the outer acoustic flow.

5.1. The reduced problem

For the analysis of the heat sources in the intermediate range t ′
a � t ′

d � t ′
c, it is

convenient to measure the time with t ′
d and the gas velocity with r ′

h/t ′
d � (p′

o/ρ
′
o)

1/2

by introducing the alternative variables of order unity τ = t/td and u = tdv, while
Θ = t

1/(σ + 1)
d θ becomes the appropriate temperature variable, which is of order unity,

as can be anticipated from the heat flux condition (3.5). Since the pressure increments
pe − 1 in the conductive core are of order t−1

d , the accumulation of internal energy
can be neglected in the first approximation in the energy balance (3.7), which can be
integrated to yield the location of the contact surface

re =

(∫ τ

0

q dτ

)1/(j +1)

, (5.1)

where the heating function q(τ ) must satisfy
∫ 1

0
q dτ = 1 and q = 0 for τ > 1. The

resulting near-isobaric thermal wave can be solved in the first approximation,
independently of the outer inviscid field, by integrating the heat equation

1

Θ2

∂Θ

∂τ
− 1

rj

∂

∂r

[
1

Θ

(
q

(j +1)
+ rjΘσ ∂Θ

∂r

)]
= 0, (5.2)
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with the initial and boundary conditions

τ = 0 : Θ = 0,

τ > 0 :

{
r → 0 : (j + 1)rjΘσ∂Θ/∂r = −q,

r = re : Θ =0, Θσ∂Θ/∂r = 0.

}
(5.3)

The solution is seen to depend on the thermal-conductivity exponent σ and on the
heating rate q(τ ), which is applied during a finite period 0 < τ � 1. According to the
flux condition at r = 0, the temperature remains bounded at the source for j =0, but
grows to infinity at r = 0 for the line and point source, for which

Θσ + 1 ∼ −(σ + 1)(q/2) ln r and Θσ + 1 ∼ (σ +1)/(3r), (5.4)

respectively, as r → 0. For a realistic source of finite size, the temperature profile
flattens as the source is approached, reaching a peak value at r =0 that depends
on the source size. With convection being negligible in this near-source region, the
solution is determined by a balance of conduction and external heating, giving a
temperature profile, not computed here, that matches with the asymptotic solutions
given in (5.4).

During the period of heat deposition, the thermal expansion sets the gas in motion
away from the source, yielding a thermal wave with an increasing radius given in (5.1).
The velocity field

u =
1

rj

(
q

j + 1
+ rjΘσ ∂Θ

∂r

)
(5.5)

obtained from (3.3) in this near-isobaric limit reduces to u = q/[(j +1)rj ] as the heat
conduction vanishes for r > re. As can be seen, the outer velocity field corresponds in
a first approximation to the incompressible flow induced by a volumetric source with
strength q/(j + 1).

The hot kernel is separated from the outer gas by a thin transitional layer, where
T ′/T ′

o ∼ O(1), of characteristic thickness ε1/2. When the outer temperature remains
constant, as occurs in the near-isobaric case for which T ′ = T ′

o for r ′ >r ′
e, the solution

for the temperature in the transition layer admits a self-similar description in terms
of the local coordinate y = (re − r)/(ε1/2δ), where the function δ(t) is that given
in (3.9) with pe = 1. The resulting profile, which was determined by Sánchez et al.
(2003), can be obtained by integrating −(1−σ )yTy/(1 + σ ) + T σT 2

y = T (T σTy)y , which
corresponds to (5.2) written in terms of the rescaled variables y and T = T ′/T ′

o . The
boundary condition T (−∞) = 1 corresponds to matching with the outer temperature
T ′ = T ′

o , while the boundary condition T (∞) → y2/(σ + 1) follows from matching with the
asymptotic behaviour of the hot-core temperature profile near the apparent contact
surface.

5.2. Self-similar thermal waves

When the heating rate q varies with time with a power-law dependence, the thermal
wave has a self-similar description. The similarity variable η = r/τ (α + 1)/(j + 1) follows
from measuring the length with the instantaneous location of the contact surface
re = τ (α +1)/(j +1), determined from (5.1) with q = (1 + α)τα , where the exponent α must
be larger than −1 for the heat release to be finite and where the factor (1 + α) must

be included to satisfy the integral constraint
∫ 1

0
q dτ = 1. By introducing the similarity

function F (η) = τ−(2α−j + 1)/[(j +1)(σ + 1)]Θ the problem reduces to that of integrating

2α − j +1

(α + 1)(σ +1)
F − ηFη − F 2

ηj

[
1

F

(
1 +

j +1

α + 1
ηjF σFη

)]
η

= 0 (5.6)
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with the boundary conditions

η → 0 : (1 + α) + (j + 1)ηjF σFη = 0,

η = 1 : F = 0.

}
(5.7)

Results of integrations of this similarity problem with σ = 0.5 and different values of
α are presented in figure 4. The profiles H (η) shown in the figure as symbols pertain to
non-isobaric self-similar solutions of the thermal wave with constant heating rate, to
be developed below. Note that the profiles α = 0, included here for completeness
of the presentation, were originally given, in a slightly different notation, in
Clarke et al. (1984) (for j = 0) and Sánchez et al. (2003) (for j = 1 and j = 2). As a
final remark concerning these similarity solutions, it should be noted that the condition
that the temperature in the thermal wave be sufficiently larger than T ′

o , Θ
σ + 1 � (t ′

d/t ′
c),

is a necessary requirement for the validity of the front solution. From the definition
of F , it is clear that this condition is always satisfied if α � (j − 1)/2, while a front
solution only develops for τ � (t ′

d/t ′
c)

(j + 1)/(2α−j +1) when α > (j − 1)/2.

5.3. Near-isobaric post-heating evolution

The period of heat deposition ends at τ = 1, when the contact surface is located
at re = 1. The contact surface remains at re = 1 for τ > 1, when the temperature
monotonically decreases within the hot pocket, where the gas starts moving towards
the source, whereas the cold fluid located at r > 1 remains stagnant in first
approximation. Note that this value r ′

e = r ′
h for the final location of the contact surface

follows directly from the definition (1.1), as can be seen by introducing T ′ = T ′
o for

r ′ >r ′
e and T ′ � T ′

o for r ′ <r ′
e into the energy balance (1.5). Since in this near-isobaric

case the amount of energy carried away from the hot kernel by the pressure wave
is negligibly small, all of the energy deposited remains within the hot pocket for
t ′
c � t ′ > t ′

d , with a distribution given in terms of the function h by h = rj + 1 for r � 1
and h = 1 for r > 1. This front-like description for the thermal wave eventually loses
accuracy for times of order t ′

c, when the temperature in the hot pocket becomes of
the order of T ′

o .
The evolution of the temperature after the source has been turned off at τ = 1 is

determined from the problem

Θ−1
(
Θτ +ΘσΘ2

r

)
= r−j (rjΘσΘr )r ,

τ = 1 : Θ = Θd,

τ > 1 :

{
r =0 : Θr = 0,

r =1 : Θ =0,


 (5.8)

obtained by rewriting (5.2) and (5.3) with q =0 and re = 1. The initial profile Θd(r),
which must be computed by integrating (5.2) for 0 <τ < 1, becomes simply Θd = F (r)
when the solution in the deposition period is of the similarity form investigated
previously.

The initial profile Θd(r) remains initially unperturbed, except in the near-source
region. The singular temperature distribution encountered for the point and line
sources near the origin, whose leading-order behaviour is indicated in (5.4), evolves
after the deposition period to give a finite peak temperature Θ = Θs(τ̄ ) at the source
for τ̄ = τ − 1 > 0. In this near-source region, the effect of convection is negligible, so
that the solution is given by a linear balance between accumulation and conduction
that determines the initial evolution of the local temperature profile, which can
be combined with the unperturbed outer solution Θd to provide a uniformly valid
description for the temperature profile at τ̄ � 1. For instance, for the line source the
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Figure 4. The self-similar profiles F (ζ ), obtained with σ=0.5 for different values of α; symbols
represent the similarity function H (η) defined below (6.8) for the point and line source.
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�

0 0.5 1.0

1

2

3

r

0.5

0.05

0.01

0.001

� = 0

Figure 5. The solid lines represent temperature profiles obtained by integration of (5.8) with
σ = 0.5 and with the initial self-similar profile Θd = F corresponding to q = 2τ , while the
dashed line is the asymptotic description corresponding to τ � 1 evaluated at τ̄ = 0.5.

analysis of the near-source region, of characteristic size (τ̄ ln τ̄−1)1/2, provides

Θσ +1 = Θσ + 1
d − (σ + 1)qd

4
E1

(
r2

(σ + 1)qd τ̄ ln τ̄−1

)
(5.9)

for the temperature profile, where E1 is the exponential integral function and qd is
the value of the heating rate at τ = 1. The analysis also gives the initial evolution of
the source temperature

2Θσ + 1
s

/
[(σ + 1)qd] = − 1

2
ln[(σ + 1)qd τ̄ ln τ̄−1] + γ1/2, (5.10)

where γ1 is Euler’s constant. Equation (5.9) can be evaluated at τ̄ � 1 to
give a singularity-free initial temperature profile for integration of (5.8). Results
corresponding to σ = 0.5 are shown in figure 5, where the initial profile is that
produced by a linearly increasing heating rate q =2τ .

For (εtd)
−1 � τ � 1, the scaled temperature decreases to values of order τ−1/(σ + 1),

as can be seen from a straightforward order-of-magnitude analysis of (5.8). This
long-time behaviour admits a self-similar description, independent of the deposition
period, in terms of the rescaled variable of order unity G(r) = τ 1/(σ + 1)Θ , which is
determined from the solution of the problem

1

σ +1
+

G

rj
(rjGσ−1Gr )r =0; Gr (0) = G(1) = 0. (5.11)

Numerical integration is in general required to provide the similarity profile G,
although some explicit analytic solutions are available for the above problem for
particular values of σ , i.e. when σ = 0, G = (2/π2) sin2[π(1 − r)/2] and G =(1 −
r2)2/8 for j = 0 and j =1, respectively. The profiles of G computed with σ = 0.5 are
shown in figure 6 for the three geometrical configurations. The self-similar profile
Θ = τ−1/(σ +1)G(r) corresponding to the line source is compared in figure 5 with the
numerical results for τ̄ = 0.5, indicating that the asymptotic solution for τ � 1 already
provides an accurate description for the temperature profile for values of τ − 1 of
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Figure 6. The self-similar profiles G(r) obtained with σ = 0.5.

order unity. Note that the self-similar solution Θ = τ−1/(σ + 1)G(r) holds for times in
the intermediate range t ′

d � t ′ � t ′
c, when the temperature in the hot pocket remains

much larger than the outer unperturbed temperature T ′
o . Further evolution requires

consideration of the distinguished regime t ′ ∼ t ′
c with T ′ ∼ T ′

o , yielding the problem
written below in (7.2) that uses the profile G to construct the initial temperature
profile.

6. External energy sources with td ∼ O(1)

When the deposition time t ′
d is of order t ′

a , i.e. td ∼ O(1), the cold fluid displaced by
the contact surface moves with a characteristic velocity of the order of the velocity of
sound, inducing changes in the non-dimensional pressure of order unity for r > re. In
that case, the accumulation of internal energy in the inner conductive region, i.e. the
first term in (3.7), can no longer be neglected, and the solution for the thermal wave
becomes coupled to that of the outer compressible flow, which needs to be studied
to determine the evolution of re(t) and pe(t). The solution necessitates numerical
integration of the Euler equations with boundary conditions given in (3.6), (3.7)
and (3.10), with (3.7) reducing to (3.11) for t > td . The functions re(t) and pe(t)
determined in this way can then be used to solve for the thermal wave by integrating
the problem displayed in (3.4) and (3.5). We investigate below the different stages
following the application of the energy source, starting with the deposition period
corresponding to 0 < t ′ < t ′

d , when the energy source is supplying heat at a given rate
q ′(t ′). Appropriate dimensionless variables will be introduced for this heating period,
during which the characteristic scales are related to the heating rate rather than to
the total amount of energy deposited. Before treating in detail the flow induced by
point and line sources with constant heating rate, we review briefly the self-similar
solutions available.

6.1. Self-similar heat propagation

Self-similar solutions exist for the heat deposition period for heating rates with a
power-law dependence on time of the form q ′ ∝ t ′j , when both the shock wave and
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the contact surface move with constant velocity. The outer flow corresponds to that
induced by a moving piston (j = 0), an expanding cylinder (j =1) or an expanding
sphere (j = 2), moving with a constant velocity dr ′

e/ dt ′, which is related to the heating
rate through the energy balance (3.7) evaluated with dpe/ dt =0

peṙ
j + 1
e = q̄, (6.1)

where q̄ =(q ′/t ′j )/[2j πδj

ρ ′
ocpT ′

o(p
′
o/ρ

′
o)

(j + 1)/2] is a dimensionless measure of the
heating rate. The case of constant-rate heat deposition from a planar source, studied
by Clarke et al. (1984), is particularly simple, in that the flow between the contact
surface (the piston) and the shock wave is uniform, with a pressure pe = ps that
can be easily computed by equating the velocity for the shocked gas, given in the
second equation (3.10), to the velocity of the contact surface obtained from (6.1). The
solutions for the line source with linearly increasing heating rate and for the point
source with quadratically increasing heating rate are somewhat more involved; they
still make use of (6.1) to relate the piston velocity to the heating rate, but necessitate
integration of the Euler equations written for the similarity coordinate r/t to find the
pressure at the contact surface pe for a given value of ṙe, as done by Taylor (1946)
for the expanding sphere. Values of ṙe and ṙs obtained following this procedure for
γ = 1.4 with different values of the heating rate q̄ are given in figure 7 for both the
line and point sources. As can be seen, ṙe → (q̄)1/(j + 1) and ṙs → γ 1/2 when q̄ � 1, which
corresponds to the limit of near-isobaric heating. The corresponding outer acoustic
solution is described in Deshaies & Clavin (1979) for j = 2. For completeness, sample
profiles of pressure and temperature obtained with q̄ = (0.1, 1, 4) are also exhibited in
the figure; the interested reader should consult Taylor (1946) for extensive calculations
of the expanding sphere, to be used in connection with (6.1) for calculating the self-
similar solution for the point source for other values of q̄ .

The self-similar description for the outer inviscid flow when q ′ ∝ t ′j is accompanied
by a self-similar solution for the inner conductive core. Since the pressure does not
vary with time, the resulting thermal wave can be related to the family of self-similar
near-isobaric fronts identified above, yielding

T ′/T ′
o =

[
q ′/(

2j πδj koT
′
or

′j−1
e

)]1/(σ +1)
F (η), (6.2)

where the normalized coordinate η = r ′/r ′
e is scaled with the location of the contact

surface r ′
e = ṙ ′

et
′ and the similarity function F is that shown in figure 4 for α = j .

6.2. The outer inviscid compressible flow for a constant heating rate

The flow structure is not self-similar for heating rates different from q ′ ∝ t ′j , so that
for the family of power-law rates q ′ ∝ t ′α , α > j leads to accelerating flows with
leading shocks of increasing strength, while the flows show the opposite behaviour
for α < j , and are characterized initially by the appearance of a strong shock wave.
As a relevant example of the latter type of solution, we investigate below the flow
induced by a line or point source with a constant heating rate.

To study the deposition period, it is convenient to introduce as scales for time and
length those associated with the constant heating rate q ′ = q ′

o. As can be inferred
from (3.7), this rate defines a characteristic time, t ′

o, obtained from the energy balance

2j πδj

j +1
ρ ′

ocpT ′
o(p

′
o/ρ

′
o)

(j +1)/2 =
q ′

o

t
′j
o

, (6.3)

for which the velocity of the contact surface has decreased to a value of the order of
the sound velocity, giving pressure increments of the order p′

o. Using this characteristic
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Figure 7. The variation of ṙs and ṙe with the heating rate q̄ obtained with γ = 1.4 for j = 1
(solid lines) and j =2 (dashed lines), along with the self-similar profiles of pressure and
temperature obtained with q̄ = 0.1 (1), q̄ =1 (2) and q̄ = 4 (3).
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time, and its associated length r ′
o =(p′

o/ρ
′
o)

1/2t ′
o, in defining the alternative non-

dimensional coordinates r̂ = r ′/r ′
o = t

1/j
d r and t̂ = t ′/t ′

o = t
1/j
d t , reduces (3.6) and (3.7)

to

v =
dr̂ e

dt̂
= ṙe,

r̂j + 1
e

γ

dpe

dt̂
+ pe

dr̂ j + 1
e

dt̂
= 1. (6.4)

The solution for the outer flow involves numerical integration of the Euler equations
supplemented with the jump conditions (3.10) at r̂ = r̂ s and (6.4) at r̂ = r̂ e, yielding a
problem that depends only on the parameter γ , i.e. the deposition time td enters only
when defining the end of the deposition period, which corresponds in this alternative
formulation to the instant t̂ = t

(j + 1)/j
d .

An infinitely strong shock forms initially following the application of a constant-
rate source from a line or point, source, giving a singular behaviour for t̂ � 1,
which was first analysed by Rogers (1958), that needs to be computed to provide
the initial profiles of density, pressure and velocity. To describe this initial period,
we write the Euler equations in terms of the similarity variables of order unity,
P (ζ ) = t̂2j/(j + 3)p, R(ζ ) = ρ and V (ζ ) = t̂ j/(j +3)v, along with the similarity coordinate
ζ = r̂/t̂3/(j +3). Integrating the resulting system of ordinary differential equations with
boundary conditions at the contact surface

ζ = ζe: V =
3

j + 3
ζ,

ζ j + 1

(j + 3)γ
{[3γ (j + 1) − 2j ]P − 3ζPζ } =1 (6.5)

and at the leading shock

ζ = ζs: R =
γ + 1

γ − 1
, V =

(
2P

(γ + 1)

)1/2

,
3

j + 3
ζ =

(
(γ + 1)P

2

)1/2

(6.6)

determines for a given value of γ the self-similar profiles P (ζ ), V (ζ ) and R(ζ ), along
with the values of ζs and ζe. The solution corresponding to γ = 1.4 is shown in
figure 8. In this case, the locations of the contact surface and of the shock wave
are ζe = (1.1434, 1.2311) and ζs = (1.3066, 1.3673) for j = (1, 2), respectively, while the
corresponding boundary pressures are Pe = (0.6705, 0.4363) and Ps =(0.8003, 0.5609).
The density profiles are seen to vanish at the contact surface, approaching the
boundary with a local solution of the form R ∝ (ζ − ζe)

1/(3γ −1) if j = 1 and
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R ∝ (ζ − ζe)
4/(9γ −4) if j = 2. To understand this behaviour, note that each fluid

particle conserves its entropy after crossing the shock. The fluid particles at ζ = ζe,
which at the initial instant cross the infinitely strong shocks, must therefore maintain
an infinitely large entropy as they expand, which can only be achieved with an infinite
temperature and, therefore, a vanishing density. This singular behaviour is absent in
the self-similar solutions corresponding to q ′ ∝ t ′j , for which the application of the
heating rate results in a shock wave of finite constant strength, so that the resulting
temperature remains finite at the contact surface. Note also that, as a consequence of
the vanishing density, a zero pressure gradient Pζ = 0 is needed to accelerate the fluid
located at ζ = ζe, thereby simplifying (6.5).

The self-similar solution for t̂ � 1, evaluated at t̂ = 10−5 (j = 1) and at t̂ = 10−4

(j = 2), was used as initial condition to integrate the Euler problem for the outer
compressible flow for γ =1.4. The resulting values of the velocity and location of
the contact surface and of the shock wave are plotted in figure 9, along with the
associated boundary pressures. For completeness, the figure includes comparisons
with the asymptotic behaviour for t̂ � 1. As expected, the numerical solution shows
departures from the asymptotic results as the rescaled time t̂ increases to values of
order unity. The pressure decreases for increasing values of t̂ , so that the near-isobaric
limit p = 1 is approached for t̂ � 1, when the velocity of the contact surface is given
by ṙe � t̂−j/(j +1)/(j +1), as can be deduced from (6.4), and the shock wave becomes
a weak discontinuity moving with a velocity slightly above the velocity of sound,
ṙs � γ 1/2. Sample profiles of temperature and pressure corresponding to different
values of t̂ are given in figure 10 for the line source. These profiles constitute the
initial condition for studying the flow evolution after the source is switched off at
t̂ = t

(j + 1)/j
d , a problem addressed in the following section.

6.3. The conductive thermal wave for a constant heating rate

The same rescaled variables t̂ and r̂ can be used, together with a rescaled temperature
θ̂ = {αo/[(p

′
o/ρ

′
o)

1/2r ′
o]}1/[j (σ + 1)](T ′/T ′

o) = t
1/[j (σ +1)]
d θ , to write equations (3.4) and (3.5)

in the form

∂

∂t̂

(
pe

θ̂

)
+

1

r̂ j

∂

∂r̂

[
1

θ̂

(
1

(j +1)
− r̂ j + 1

(j + 1)γ

dpe

dt̂
+ r̂ j θ̂ σ ∂θ̂

∂r̂

)]
= 0 (6.7)

and

t̂ = 0 : θ̂ = 0,

t̂ > 0 :

{
r̂ → 0 : (j + 1)r̂ j θ̂ σ ∂θ̂/∂r̂ = −1,

r̂ = r̂ e : θ̂ = 0,

}
(6.8)

which can be integrated, with use made of the functions pe(t̂) and r̂ e(t̂) determined
above, to provide the variation with time of the thermal wave for a given value
of σ . Self-similar solutions exist for both t̂ � 1 and t̂ � 1 which can be obtained
by introducing the normalized coordinate η = r̂/r̂e, with r̂ e = ζet̂

3/(j + 3) for t̂ � 1
and r̂ e = t̂1/(j + 1) for t̂ � 1. As seen above in figure 9, the pressure approaches
the ambient value pe = 1 for t̂ � 1, yielding a near-isobaric thermal wave of the
form θ̂ = t̂−(j−1)/[(j +1)(σ +1)]F (η), where F , depicted in figure 4, is determined from
integrating (5.6) and (5.7) with α = 0. It is interesting that the solution for t̂ � 1 can
be expressed in terms of the same family of similarity functions. Introducing

θ̂ =
[
ζet̂

3/(j +3)
]−(j−1)/(σ +1)

H, (6.9)
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Figure 9. The variation with time of the velocity (a), location (b) and pressure (c) of the
contact surface (dashed lines) and of the shock wave (solid lines) obtained during the deposition
period with constant heating rate and γ = 1.4. The dot-dashed lines represent the asymptotic
behaviours for t̂ � 1.

and taking into account the result ζ j + 1
e Pe = γ (j + 3)/[3γ (j + 1) − 2j ], which follows

from (6.5) with Pζ = 0, reduces (6.7) and (6.8) to the similarity problem given above
in (5.6) and (5.7), with α =0 and with the numerical factor (2α−j + 1)/[(α + 1)(σ + 1)]
affecting F being replaced with 2(γ − 1)/(3γ − 1) for j = 1 and −[9γ − 12(σ + 1)
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Figure 10. Temperature and pressure profiles induced in the outer region by a line source
of constant heating rate.

(γ − 1)]/[(9γ − 4)(σ + 1)] for j = 2. The self-similar profiles H (η), obtained with
γ =1.4 and σ = 0.5, are shown as symbols in figure 4 for the point and line sources.
As can be seen, in both cases the differences with the corresponding profiles F with
α = 0 are imperceptible.

Temperature profiles determined by integration of (6.7) and (6.8) for the spherical
thermal wave with σ = 0.5 are shown in figure 11. For comparison, we include the
asymptotic behaviours at small and large times. Cylindrical thermal waves were also
computed. In that case, the asymptotic behaviours reduce to θ̂ =F (η) for t̂ � 1 and
to θ̂ = H (η) for t̂ � 1. It is interesting to note that, since the functions F and H
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Figure 11. Solid lines represent profiles of θ̂ at t̂ = 0.01 (1), t̂ = 0.1 (2), t̂ = 1 (3) and t̂ = 5
(4), obtained for the point source from numerical integration of (6.7) and (6.8) with σ = 0.5;
the profile at t̂ = 0.1 is compared with the asymptotic prediction for t̂ � 1, while the profile at
t̂ = 5 is compared with the asymptotic prediction for t̂ � 1.

are practically identical, the shape of the resulting temperature profiles obtained by
integration of (6.7) and (6.8) for the line source does not change appreciably in time
when, as in figure 11, the normalized coordinate r/re is used.

7. Post-heating evolution for t > td

After the source is switched off, the evolution of the hot fluid volume r < re is
globally isentropic, as stated in (3.11). In the absence of a driving mechanism, the
rate of expansion of the hot core diminishes, leading to a rapid decrease of the
pressure pe. This is illustrated in figures 12 and 13, where we show the flow evolution
after a line source is switched off at td = 0.1. The results correspond in particular to
sources with a linearly increasing heating rate and with a constant heating rate, the
two cases investigated in the previous section. As can be seen, there is an expansion
wave that propagates outwards, reaching the shock wave at a later instant. Both the
contact surface and the shock wave decelerate, the former to occupy a final location
re = ra and the latter to eventually become a negligibly weak wave of the acoustic
type. Outside the heat conduction core, the solution for t � 1 shows an interior
region of stagnant gas at atmospheric pressure, where the temperature has already
attained a constant distribution Ta(r). As in the case of instantaneous heat deposition
discussed above, the near-acoustic wave travelling outwards shows a characteristic
structure with a rarefaction region of reverse flow lagging behind the compressed gas.
As before, no development of secondary discontinuities was found in the numerical
computations for the range of times considered, suggesting that, as in the case of
instantaneous deposition studied by Okhotsimskii & Vlasova (1962), a second shock
develops from the rarefaction region only for t � 1.
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Figure 12. Post-heating evolution of the temperature and pressure for a line source with
td =0.1 and γ = 1.4. The left-hand plots correspond to a source of constant heating rate, while
the right-hand plots correspond to a source of linearly increasing heating rate.

The velocity of the contact surface vanishes as the pressure settles to the ambient
value p =1 for t � 1, so that (3.11) gives the final asymptotic value of re = ra for given
values of re and pe at t = td . The resulting value of ra , a function of the deposition
rate, is in the range 0 � ra � 1, where the lower bound ra = 0 is approached according
to ra ∼ t

2(γ −1)/[γ (j +3)]
d for td � 1, while the upper bound ra =1 corresponds to isobaric

deposition (td = ∞). It is possible to compute ra in some cases of interest. For instance,
if the heat is released with a rate q ′ ∝ t ′j , use of (6.1) yields ra = (ṙetd)

(γ −1)/γ , where
the constant contact-surface velocity during the heating period ṙe is given in figure 7
as a function of the dimensionless heating rate q̄ = 1/t

j + 1
d . It is also possible to com-

pute ra for a line or point source of constant heating rate when td � 1. In that
case, the analysis of the limit t̂ � 1 yields re = ζet

2/(j + 3)
d and pe = Pet

−2(j +1)/(j +3)
d at

the end of the deposition period. Introducing these values into (3.11) yields ra =
ζeP

1/[γ (j +3)]
e t

2(γ −1)/[γ (j +3)]
d for the final contact-surface location.

The contact surface divides the hot gas into two regions: an inner region for r < ra

where the gas was heated by conduction from the source and an outer region where
the temperature has increased as a result of the shock wave heating. In the inner
region, the evolution of the temperature for t > td is qualitatively similar to that shown
in figure 5, giving a profile that for ε−1 � t � 1 eventually approaches the asymptotic
self-similar form

Ta =
[
r2
a

/
(εt)

]1/σ + 1
G(r/ra) for r < ra, (7.1)
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Figure 13. The velocities of the contact surface and of the shock wave for a line source with
td = 0.1 and γ = 1.4. The thick lines correspond to a source of constant heating rate, while the
thin lines correspond to a source of linearly increasing heating rate.

where the function G is plotted in figure 6. The associated fraction of energy stored
up to the radius r is simply h = rj + 1 for r � ra as can be seen from (4.2) with Ta � 1,
so that the relative amount of energy that remains in this inner hot region is rj + 1

a .
The rest of the energy lies in the outer gas, with a final distribution that depends on
the shock history through the entropy gain of each shocked fluid particle.

The numerical procedure for the calculation of Ta is analogous to that previosly
delineated in § 4. The outer profiles of Ta(r) and h(r) corresponding to a line source
are shown in figure 14 for different values of td and for the two heating rates of
figures 12 and 13. The profile Ta(r) corresponding to instantaneous heat deposition,
given previously in figure 3, is included for completeness. The comparison with the
profile td = 0.01 reveals that the finite deposition time influences significantly the
asymptotic temperature profile even for very intense sources with td � 1. However,
for this case td = 0.01 the function giving the stored energy fraction, h(r), is practically
indistinguishable from that shown in figure 3 for instantaneous heat deposition.

The profiles of h corresponding to a given td are very similar for the two heating
rates, while larger differences are seen in the temperature profile as the contact surface
is approached, a behaviour also observed in the temperature profiles of figure 12. For
a linearly increasing heating rate, the constant finite strength of the shock wave during
the deposition period results in a finite value of Ta at the contact surface. On the
other hand, for the source of constant rate the shock wave formed initially is infinitely
strong, thereby giving an infinite value for Ta(ra), with Ta ∝ (r − ra)

−2j/[3γ (j + 1)−2j ] for
r − ra � 1. Note that this singularity would not be present if, as can be expected in
realistic configurations, a finite time is required for the heating rate to increase from
zero to a given constant value as the source is switched on at t = 0.

The temperature profile Ta(r) given in (7.1) for r < ra and in figure 14 for r > ra

is modified for times of order t ′
c. With compressibility effects being negligible, the

solution for this final stage depends on the combined effect of heat conduction
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towards the cold outer gas and inwards convection, necessary to replenish the low-
density hot pocket. Starting from the continuity and energy conservation equations,
and following the development leading to (3.4), produces in this case the heat problem

1

T 2

∂T

∂ς
− 1

rj

∂

∂r

(
rjT σ−1 ∂T

∂r

)
= 0;

ς =0 : T = Ta(r),

ς > 0 :

{
r = 0 : ∂T /∂r = 0,

r → ∞ : T =1,


 (7.2)

where use is made of the non-dimensional time of order unity ς = t ′/t ′
c = εt . Since the

energy released during the deposition period remains in the flow field as an excess
enthalpy, the solution for the temperature profile must satisfy the integral constraint
(j + 1)

∫ ∞
0

(1 − 1/T )rj dr = 1, as obtained from a first quadrature of (7.2).
The heating rate applied during the deposition period enters this final conductive

period through the initial temperature profile Ta , which is constructed by combining
the asymptotic solution (7.1), evaluated at εt � 1, with the outer profile shown in
figure 14. For instantaneous heat deposition (td � 1) the hot kernel is negligibly
small and the initial temperature distribution is that given in figure 3. The problem
was addressed by Meerson (1989), who studied the initial near-source evolution for
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Figure 15. The conductive evolution of the temperature for j = 1 for near-isobaric heat
deposition from an energy source with td � 1; the dashed lines represent temperature profiles
determined from the asymptotic behaviours at ς � 1 and ς � 1.

the spherical hot pocket. On the other hand, in the opposite limit of near-isobaric
deposition td � 1, the temperature increment in the outer region is negligible, and the
initial temperature reduces to

Ta = 1 + ς−1/σ + 1G(r). (7.3)

The associated solution to (7.2) is given in figure 15 for the line source. The profile (7.3)
evaluated at ς = 0.001 was used as initial condition in the integration. To illustrate
the evolution of the solution for ς � 1, the profile obtained numerically at ς = 0.01
is compared in the figure with the initial profile (7.3).

The hot pocket continues evolving for times much larger than the conduction time,
when the temperature and the density approach their ambient values. The small
departures of the temperature from T ′

o ,

T − 1 =
ς−(j + 1)/2

2j (j + 1) � 1
2
(j +1)

exp

(
− r2

4ς

)
, (7.4)

are given by the self-similar constant-density solution (Carslaw & Jaeger 1959), where
� represents the Gamma function (Abramowitz & Stegun 1965). As can be seen,
the final temperature evolution depends only on the total amount of energy released
Ej , which determines the scale r ′

h used to define r = r ′/r ′
h and ς = t ′/(r ′2

h /αo). This
long-time asymptotic prediction is compared in figure 15 with the profile obtained at
ς =3 by integration of (7.2).

8. Conclusions
The present paper has investigated heat propagation in a gas from planar, line

and point sources of size much smaller than the size r ′
h of the region being heated.
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Deposition times t ′
d of the order of the relevant acoustic time t ′

a = r ′
h/(p

′
o/ρ

′
o)

1/2 are
considered in the paper, a limit previously explored by Clarke et al. (1984) in their
analysis of heating of a gas from a plane wall. As in the previous work, it is seen
that heat conduction cooperates with convection to heat the gas surrounding the
source, forming a nearly empty high-temperature kernel of uniform pressure. The
boundary of this hot kernel acts as a contact surface that displaces the outer cold
fluid, inducing velocities that are of the order of the unperturbed velocity of sound.
This rapid displacement produces a shock wave that propagates outwards, increasing
the temperature by a relative amount of order unity in a region of size comparable to
that of the conductive hot kernel. Although our work has been restricted to symmetric
configurations, the same two-region flow structure is present around non-symmetric
energy sources, such as a line source of finite length, a problem that should be
addressed in future work.

The ratio of the acoustic time to the conduction time ε, of the order of
the characteristic Knudsen number of the reference state, has been taken as an
asymptotically small parameter in formulating the governing equations for the two
separate regions. Besides the distinguished limit t ′

d ∼ t ′
a , particular consideration has

been given to the limits of near-isobaric heat propagation, t ′
d � t ′

a , and instantaneous
heat release, t ′

d � t ′
a , thereby complementing our previous investigation of the limit

t ′
d ∼ t ′

c (Sánchez et al. 2003) . The different solutions arising in the different cases are
summarized below, where the reader should remember that t ′

λ/t ′
a ∼ t ′

a/t ′
c = ε � 1.

Instantaneous heat deposition (t ′
d � t ′

a)
(i) t ′

d � t ′ � t ′
a: the self-similar description of the initial blast wave is due to Sedov

(1946) and Taylor (1950).
(ii) t ′ ∼ t ′

a: the evolution of the shock wave was first computed numerically by
Goldstine & Neumann (1955) and Brode (1955) for j = 2 and by Korobeinikov &
Chushkin (1966) for j = (0, 1).

(iii) t ′
a � t ′ � t ′

c: the asymptotic distribution of temperature as the pressure settles
everywhere to the ambient value, of interest for flame initiation studies, is given in
figure 3.

(iv) t ′ ∼ t ′
c: the final conductive evolution is described by (7.2). The near-source

initial evolution was given for the point source by Meerson (1989).

Two-region flow structure (t ′
d ∼ t ′

a). There exists an inner hot kernel described by (3.4)
and (3.5) and an outer inviscid compressible region, described by the Euler equations
supplemented with (3.6), (3.7) and (3.10).

(i) t ′ � t ′
d: for constant heating rate, the self-similar solution for the initial evolution

of the outer flow, described by Rogers (1958), Freeman (1968), and Dabora (1972), is
shown in figure 8, whereas the associated self-similar temperature profile in the hot
core is given in (6.9).

(ii) t ′ � t ′
d: there exist self-similar descriptions when q ′ ∝ t ′j . For the outer flow,

the solution, given in figure 7, corresponds to the flow induced by a constant-velocity
piston, first described for j = 2 by Taylor (1946). The corresponding self-similar
temperature profile in the hot core is given in (6.2). For a constant heating rate,
the solution requires numerical integration, leading to the results shown in figures 9
and 10 for the outer region and in figure 11 for the inner region.

(iii) t ′
d < t ′ ∼ t ′

a: the solution requires numerical computation, giving the evolution
shown in figures 12 and 13.
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(iv) t ′
a � t ′ � t ′

c: the temperature reaches a constant distribution in the outer region,
shown in figure 14, while the temperature in the hot kernel reaches a self-similar profile
given in (7.1), where the function G is plotted in figure 6.

(v) t ′ ∼ t ′
c: the final conductive evolution is described by (7.2).

Near-isobaric fronts (t ′
a � t ′

d � t ′
c). The solution for the temperature in the hot kernel

is described by (5.2) and (5.3).
(i) t ′ < t ′

d: the front solutions admit a self-similar description for q ′ ∝ t ′α , which
is given in figure 4. The solutions for a constant heating rate were first obtained by
Clarke et al. (1984) (j =0) and by Sánchez et al. (2003) (j =1, 2).

(ii) t ′
d < t ′ � t ′

c: the solution requires numerical integration of (5.8), giving the
evolution shown in figure 5.

(iii) t ′
d � t ′ � t ′

c: there exists a self-similar solution, (7.3), for the temperature, where
the function G is plotted in figure 6.

(iv) t ′ ∼ t ′
c: the final conductive evolution is described by (7.2), with results given in

figure 15.

As previously mentioned, our study has considered the heating period during which
the source remains active, and also the post-heating evolution corresponding to t ′ > t ′

d .
For times much smaller than the conduction time t ′

c = r ′2
h /αo, the hot kernel remains

clearly distinct from the outer inviscid compressible region, so that the asymptotic
temperature profile Ta(r) encountered at times in the intermediate range t ′

a � t ′ � t ′
c

includes the self-similar solution (7.1) for r < ra and the constant distribution of
figure 14 for r > ra .

In summary, the results of our work are relevant for the calculation of the
minimum ignition energy for deflagration initiation, a quantity of interest for premixed
combustion devices and accidental explosion events. The previous numerical studies
of Maas & Warnatz (1988) and Frendi & Sibulkin (1990) have indicated that
ignition is more easily achieved with concentrated sources with deposition times
sufficiently smaller than the conduction time. Under such conditions, the asymptotic
temperature distribution Ta(r) given above constitutes the appropriate initial condition
for integration of the reactive conservation equations. To determine the minimum
ignition energy Em for a given value of td the integrations should consider initial
temperature distributions corresponding to different Ej . Depending on the amount
of energy deposited, either successful initiation of a self-sustained deflagration or
ignition failure would be observed. The energy and temperature distributions of
figure 14 allow us to anticipate the dependence of the minimum ignition energy on td .
As shown in figure 14, for sources with td <∼ 1 the shock wave that forms effectively
distributes a fraction of the energy away from the source, in an extended region
where the temperature increases only by a small relative amount. It can be expected
that this mildly heated gas has only a limited effect on the ignition process, which is
mainly controlled by the high-temperature kernel. Since the energy of this core is only
a fraction rj + 1

a of the total energy deposited Ej , the resulting value of Em decreases
for increasing values of td . The smallest value of Em will be associated with values
of td � 1, corresponding to the intermediate range t ′

c � t ′
d � t ′

a , when the shock wave
produced during the deposition period is negligibly weak and all of the heat deposited
appears concentrated in a neatly defined inner core of very high temperature, yielding
the most favourable conditions for ignition. Clearly, the use of (7.3) as initial condition
in calculations of Em should be investigated in future work.
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